28 research outputs found

    ALCOR Project: Contributions to Optimizing Remote Robot Guidance in Intelligent Spaces

    Get PDF
    The work shows the sensory, communication and control solutions for the remote guidance of robots in intelligent environments, as derived activity from the ALCOR project. In this type of applications, optimizing shared resources, especially those related to energy autonomy and the use of the wireless channel, remains a challenge. The main contributions of the project are: a) development of sensorial units based on infrared with centimeter accuracy in the location of the source and response times of milliseconds; b) wireless communication solutions that improve the information routing and homogenization in network traffic; and c) control and estimation solutions based on events with independent mechanisms of action on the mobile unit and request for measurements to the sensor module. The commercial robot P3-DX has been used for experimental tests

    Differential Binary Encoding Method for Calibrating Image Sensors Based on IOFBs

    Get PDF
    Image transmission using incoherent optical fiber bundles (IOFBs) requires prior calibration to obtain the spatial in-out fiber correspondence necessary to reconstruct the image captured by the pseudo-sensor. This information is recorded in a Look-Up Table called the Reconstruction Table (RT), used later for reordering the fiber positions and reconstructing the original image. This paper presents a very fast method based on image-scanning using spaces encoded by a weighted binary code to obtain the in-out correspondence. The results demonstrate that this technique yields a remarkable reduction in processing time and the image reconstruction quality is very good compared to previous techniques based on spot or line scanning, for example

    A wearable closed-loop insulin delivery system based on low-power SoCs

    Get PDF
    The number of patients living with diabetes has increased significantly in recent years due to several factors. Many of these patients are choosing to use insulin pumps for their treatment, artificial systems that administer their insulin and consist of a glucometer and an automatic insulin supply working in an open loop. Currently, only a few closed-loop insulin delivery devices are commercially available. The most widespread systems among patients are what have been called the “Do-It-Yourself Hybrid Closed-Loop systems.” These systems require the use of platforms with high computing power. In this paper, we will present a novel wearable system for insulin delivery that reduces the energy and computing consumption of the platform without affecting the computation requirements. Patients’ information is obtained from a commercial continuous glucose sensor and a commercial insulin pump operating in a conventional manner. An ad-hoc embedded system will connect with the pump and the sensor to collect the glucose data and process it. That connection is accomplished through a radiofrequency channel that provides a suitable system for the patient. Thus, this system does not require to be connected to any other processor, which increases the overall stability. Using parameters configured by the patient, the control system will make automatic adjustments in the basal insulin infusion thereby bringing the patient’s glycaemia to the target set by a doctor’s prescription. The results obtained will be satisfactory as long as the configured parameters faithfully match the specific characteristics of the patient. Results from the simulation of 30 virtual patients (10 adolescents, 10 adults, and 10 children), using a python implementation of the FDA-approved (Food and Drug Administration) UVa (University of Virginia)/Padova Simulator and a python implementation of the proposed algorithm, are presented

    Accuracy and precision of agents orientation in an indoor positioning system using multiple infrastructure lighting spotlights and a PSD sensor

    Get PDF
    In indoor localization there are applications in which the orientation of the agent to be located is as important as knowing the position. In this paper we present the results of the orientation estimation from a local positioning system based on position-sensitive device (PSD) sensors and the visible light emitted from the illumination of the room in which it is located. The orientation estimation will require that the PSD sensor receives signal from either 2 or 4 light sources simultaneously. As will be shown in the article, the error determining the rotation angle of the agent with the on-board sensor is less than 0.2 degrees for two emitters. On the other hand, by using 4 light sources the three Euler rotation angles are determined, with mean errors in the measurements smaller than 0.35◦ for the x- and y-axis and 0.16◦ for the z-axis. The accuracy of the measurement has been evaluated experimentally in a 2.5 m-high ceiling room over an area of 2.2 m2 using geodetic measurement tools to establish the reference ground truth values.Junta de Comunidades de Castilla-La Manch

    Analysis of Multiple-Access Discrimination Techniques for the Development of a PSD-Based VLP System

    Get PDF
    There are several technologies and techniques available when developing indoor positioning systems (IPS). Recently, the development of positioning systems based on optical signals has aroused great interest, mainly those using visible light from the lighting infrastructure. In this work, we analyze which techniques give better results to lay the foundations for the development of a Visible Light Positioning system (VLP). Working only with a receiver, it is analyzed what the result of determining the position of different emitters is when they emit simultaneously and without any synchronism. The results obtained by Frequency Division Multiple Access (FDMA) (with digital bandpass filters, I/Q demodulation, and FFT) and Code Division Multiple Access (CDMA) are compared. The interference between signals when emitted simultaneously from multiple emitters is analyzed as well as the errors they cause and how these effects can be mitigated. As a result of the research, the advantages and disadvantages using different multiple-access determination techniques are determined. In addition, advantages and disadvantages of using FDMA and CDMA techniques as well as hardware requirements that make one more feasible than the other are presented. The system behavior, in terms of errors, is established using FDMA and different configurations such as: I/Q, RMS, or FFT. The work also determines the error rates that can be obtained with the different FDMA and CDMA configurations, considering different error scenarios and integration time. Synthetic emulations and empirical tests were performed, which concluded that IPS systems based on optical signals and PSD sensors can achieve very high measurement accuracies and a high measurement rate. Obtained positioning errors in a room of 3 m height are less than 1 cm when working in noisy environments.Agencia Estatal de Investigació

    Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces

    Get PDF
    The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems

    Accuracy and Precision Assessment of AoA-Based Indoor Positioning Systems Using InfrastructureLighting and a Position-Sensitive Detector

    Get PDF
    Unlike GNSS-based outdoor positioning, there is no technological alternative for Indoor Positioning Systems (IPSs) that generally stands out from the others. In indoor contexts, the measurement technologies and localization strategies to be used depend strongly on the application requirements and are complementary to each other. In this work, we present an optical IPS based on a Position-Sensitive Detector (PSD) and exploiting illumination infrastructure to determine the target position by Angle of Arrival (AoA) measurements. We combine the proposed IPS with different positioning strategies depending on the number of visible emitters (one, two, or more) and available prior or additional information about the scenario and target. The accuracy and precision of the proposal is assessed experimentally for the different strategies in a 2.47 m high space covering approximately 2.2 m2, using high-end geodetic equipment to establish the reference ground truth. When the orientation of the target is known from external measurements, an average positioning error of 8.2 mm is obtained using the signal received from only one emitter. Using simultaneous observations from two emitters, an average positioning error of 9.4 mm is obtained without external information when the target movement is restricted to a plane. Conversely, if four signals are available, an average positioning error of 4.9 cm is demonstrated, yielding the complete 3D pose of the target free of any prior assumption or additional measurements. In all cases, a precision (2s) better than 5.9 mm is achieved across the complete test space for an integration time of 10 ms. The proposed system represents a prospectively useful alternative for indoor positioning applications requiring fast and reliable cm-level accuracy with moderate cost when smart illumination infrastructure is available in the environment

    Aplicaciones didácticas de un CD-ROM de unidades fraseológicas

    No full text

    New Applications and Architectures Based on FPGA/SoC

    No full text
    Nowadays, the digital world demands continuous technological evolutions [...
    corecore